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Abstract

This paper investigates the trade elasticity, a key parameter in international economics,
and examines biases in its estimation arising from dynamic treatment effects and 
staggered adoption. Leveraging the 2018 US trade war tariffs as a natural experiment, 
I apply a local projections difference-in-differences approach, estimating a short-run 
elasticity of -1.4 and a long-run elasticity of -3.7, with adjustments stabilizing within 15 
months. Failing to account for staggered adoption or dynamics introduces a downward 
bias of approximately 50%. I also propose a novel correction to the estimation of dynamic 
multipliers to cumulative policy changes in the presence of staggered treatment timing. 
This correction eliminates a systematic bias that can otherwise distort estimates.



Non-Technical Summary
How much does trade respond to tariffs? This is a central question for international economics 
and trade policy, especially at a time when protectionism is on the rise. Economists use the 
concept of trade elasticity to answer this question, which measures how strongly imports fall 
when tariff costs go up. This elasticity determines the expected impact of tariff changes on trade 
flows, and it also plays a key role in calculating the welfare gains from trade in economic models. 

While the trade elasticity has been studied extensively, estimates vary widely. Older studies often 
found large values (around -5), suggesting that trade is highly responsive to tariffs. More recent 
research, especially using difference-in-differences methods, has reported much lower numbers 
(around -1.5 to -2.5). But these lower estimates may suffer from biases, which this paper sets out 
to address. 

Two key issues can distort estimates of trade elasticity. First, trade adjusts over time. When new 
tariffs are introduced, firms often need time to react (renegotiating contracts, switching suppliers, 
or reorganizing production). This means that short-run responses to tariffs may be smaller than 
the long-run effects. Second, tariff changes are often implemented in stages. Rather than all 
products being affected at once, tariffs are typically introduced in waves across different goods 
and countries. This staggered rollout creates a problem for standard methods. When combined 
with dynamic responses – that is, gradual adjustments in trade over time – this can lead to a 
serious underestimation of how strongly trade actually reacts to tariffs. 

To study this problem, I focus on the 2018 US trade war, one of the largest and most abrupt shifts 
in US trade policy in recent history. During this period, the United States imposed new tariffs 
on many products and countries, often with little warning and using rarely used trade laws. The 
policy shocks were large, sudden, and varied by product and country, making them well suited for 
empirical analysis. 

Using monthly US imports data by product and country, I apply a modern econometric approach 
that carefully accounts for both dynamics – how trade responses unfold gradually over time – and 
staggered adoption – the fact that tariffs were introduced at different times for different products 
and countries. 

The results speak clearly. When using standard methods, the long-run trade elasticity appears to 
be around -1.9, in line with previous estimates. But once we correct for dynamic responses and 
the staggered rollout of tariff changes, the long-run elasticity increases in absolute value to -3.7. 
In other words, standard approaches underestimate the true response by about 50%. 

The short-run elasticity is estimated at -1.4, confirming that trade takes time to adjust. However, 
the adjustment is relatively quick: the elasticity stabilizes after about 15 months. This is notably 
faster than suggested by previous studies, which often find adjustment periods of five years 
or more. One possible explanation is that firms perceived the trade war tariffs as temporary, 
encouraging quicker substitution away from targeted suppliers. 

These results have important implications for economic modelling. The magnitude of the trade 
elasticity feeds directly into calculations of the gains from trade – or how much better off a 
country is compared to the hypothetical situation of complete self-sufficiency (autarky). Using the 
lower, biased estimate of -1.9 would imply that the US gains 4.5% in welfare from trade compared 
to autarky. Using the corrected estimate of -3.7 cuts those gains nearly in half, to 2.4%. 

To validate these results, I show that the corrected elasticity estimates accurately predict 
observed declines in aggregate US imports from China during the trade war, as well as the effects 
of retaliatory tariffs imposed by the European Union on US products. In both cases, the estimated 



trade response closely matches what we see in the data. 

The data also reveals nearly complete pass-through of tariffs into US import prices. In other 
words, the entire cost of the new tariffs was borne by US importers, not foreign exporters. 
However, there is some variation across sectors, with a few showing incomplete pass-through. 

The findings have two key takeaways: first, policymakers and analysts using standard trade 
elasticity estimates may be underestimating the true responsiveness of trade to tariffs. Second, 
because the empirical setting closely resembles recent US tariff increases, these results can 
inform how we evaluate current and future protectionist measures. 
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Abstract

This paper investigates the trade elasticity, a key parameter in international economics,

and examines biases in its estimation arising from dynamic treatment e�ects and staggered

adoption. Leveraging the 2018 US trade war tari�s as a natural experiment, I apply a local

projections di�erence-in-di�erences approach, estimating a short-run elasticity of -1.4 and a

long-run elasticity of -3.7, with adjustments stabilizing within 15 months. Failing to account

for staggered adoption or dynamics introduces a downward bias of approximately 50%. I also

propose a novel correction to the estimation of dynamic multipliers to cumulative policy changes

in the presence of staggered treatment timing. This correction eliminates a systematic bias that

can otherwise distort estimates.

1 Introduction

The trade elasticity � the elasticity of imports to variable trade costs � is a foundational parameter

in international economics. It governs how countries respond to changes in tari�s and transport

costs and plays a central role in both static and dynamic quantitative trade models used to analyse

the e�ects of trade policy. In particular, the trade elasticity shapes the predicted welfare gains

from trade liberalization and determines the cross-country transmission of shocks in open-economy

macro models. Despite its centrality, there remains considerable uncertainty over its magnitude.

A wide range of estimates exist in the literature. Earlier studies exploiting cross-sectional

variation suggest a central value around -5 (Head and Mayer, 2014). More recent studies using

*University of Sussex. I thank L. Alan Winters, Maurizio Zanardi, Chad Bown, participants to the 2025 UKTPO
conference in London and the 2024 CITP conference in Glasgow. This research was supported by the ESRC Centre
for Inclusive Trade Policy, grant number ES/W002434/1.
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di�erence-in-di�erences (DiD) frameworks �nd substantially lower elasticities in the range of -1.5 to

-2.5 (Boehm et al., 2023; Amiti et al., 2019; Fajgelbaum, Goldberg et al., 2020). These (absolutely)

lower estimates imply that the welfare gains from trade, as calculated using the formula of Arkolakis

et al. (2012), are much larger than what would be predicted using the earlier consensus elasticity of

-5.

However, di�erence-in-di�erences estimates are potentially biased due to two key econometric

issues: dynamic treatment e�ects and staggered adoption. When treatment e�ects evolve over time,

the short- and long-run elasticities may di�er substantially. The few studies that account for these

dynamics consistently �nd that the short-run elasticity is signi�cantly lower than long-run elasticity

(Boehm et al., 2023; Anderson and Yotov, 2020; Anderson and Yotov, 2025). Second, most empirical

applications are characterised by staggered adoption. Staggered adoption occurs when a treatment

� e.g., a tari� change � is introduced to di�erent units at di�erent points in time. When combined

with dynamic treatment e�ects, staggered adoption can bias conventional di�erence-in-di�erences

estimation, necessitating appropriate methodological adjustments.

Staggered adoption introduces a bias because previously treated units are used as control for

newly treated ones. When treatment e�ects are dynamic, the previously treated units can still be

experiencing delayed treatment e�ects. When they are used as control for newly treated ones, we

have a bias in the estimation of the treatment e�ect.

In this paper, I address both concerns and demonstrate their quantitative importance for the

estimation of trade elasticity. My �ndings show that applying di�erence-in-di�erences while ignoring

dynamics or staggered adoption produces a downward bias of approximately 50% in the absolute

value of both short- and long-run trade elasticity. Consequently, the welfare gains from trade

predicted by static trade models � evaluated at the long-run elasticity � are roughly half the size of

those predicted using an elasticity estimated without accounting for staggered adoption.

My analysis exploits the arguably exogenous variation in tari�s introduced by the 2018 US-

initiated trade war as a natural experiment. The 2018 US special tari�s provide valuable econometric

variation. First, they vary across countries and products, allowing us to control for unobservable

factors with a rich set of �xed e�ects. Second, they minimise typical endogeneity concerns associated

with tari�s. These tari�s were enacted swiftly, leaving little room for anticipatory behaviours, and

leveraging rarely-used trade policy tools available to the US president (Bown, 2018a; Bown, 2017).

According to Fajgelbaum and Khandelwal (2022), these tari�s represented `the largest and most

abrupt change in US trade policy history'. Bown (2018b) further characterised this shift in trade

policy as `truly di�erent' from the past. The unprecedented and largely unexpected nature of the

tari�s ensures con�dence in their exogeneity, making them well-suited for estimating tari� elasticity.
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Finally, by focussing on a speci�c instance of tari� variation, I can precisely identify the timing of

the tari� changes and examine the surrounding economic environment.

Using monthly US import data at the 10-digit product level, I estimate the elasticity of imports

to tari�s using the local projections di�erence-in-di�erences (LP-DID) approach introduced by Dube

et al. (2023), adapted to a triple-di�erences setting relating the change in US imports over time

across products and exporting countries to changes in tari�s. The estimation covers up to 48 months

after a tari� change.

My results show that the short-run elasticity is -1.4 while the long-run elasticity is -3.7, with

convergence occurring after roughly 15 months.1 When staggered adoption is neglected, the short-

run elasticity is estimated at -0.66 and the long-run at -1.97 � a 50% downward bias in the absolute

value. By contrast, a standard di�erence-in-di�erences approach, that does not distinguish between

short- and long-run e�ects or account for the staggered nature of tari� changes, yields an elasticity

estimate of -1.86.

These results imply that the long-run gains from trade predicted by static trade models are

smaller than we previously thought. In the paper, I show that using an elasticity of -2 implies

welfare gains from trade of 4.5% for the US. By using the unbiased estimate of -3.7 instead, the

predicted welfare gains are reduced to 2.4%.

A second contribution of this paper is to formally characterise how staggered adoption can a�ect

the estimation of cumulative multipliers (Jordà and Taylor, 2025) using local projections (LP) a

technique increasingly used to measure cumulative dynamic treatment e�ects. I provide a simple

and intuitive correction based on a sample selection rule consistent with the LP-DID framework.

In particular, not dealing with staggered adoption may falsely suggest that a policy is mean-

reverting, even when the underlying policy changes are one-o� and persistent. The corrected LP-IV

estimator introduced in this paper eliminates this bias, ensuring that estimated dynamics re�ect the

actual structure of the treatment. I �nd that the elasticity of imports to cumulative tari� changes

is -3.1 after 36 months from an initial tari� shock. Without applying my correction, the estimated

multiplier is biased toward zero by approximately 25%, leading to an understatement of the long-run

trade response.

I validate the robustness of the estimated elasticities with two out-of-sample exercises. The �rst

examines aggregate US import declines from China relative to other countries following the trade

war. The second exercise focusses on the retaliatory tari�s imposed by the European Union (EU)

on US products. In both cases, my elasticity estimates accurately predict the timing and magnitude

1This relatively rapid adjustment may be a characteristic of trade wars, a phenomenon discussed in greater detail
later in the paper.
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of observed trade responses.

I also show that import prices adjust rapidly and exhibit near-complete tari� pass-through,

while import values display more persistent dynamics.

Taken together, these results suggest that failing to address staggered adoption and dynamics in

trade elasticity estimation can signi�cantly distort both empirical conclusions and policy prescrip-

tions. This paper contributes new evidence, methods, and implications that are relevant across a

wide range of applications in international economics and beyond.

The remainder of this paper is organised as follows. Section 2 reviews the literature on trade

dynamics and the estimation of the trade elasticity, and Section 3 introduces the methodology used

in this paper. Section 4 presents the policy background of the 2018 US special tari�s and Section

5 describes the data used. Section 6 presents the results. A discussion of the results is presented in

Section 7 and Section 8 concludes.

2 Literature

To estimate the trade elasticity, researchers use a range of empirical strategies. Some rely on

the gravity equation (Head, Mayer and Ries, 2010; Caliendo and Parro, 2015). Others have used

a demand system estimation (Feenstra, 1994; Broda and Weinstein, 2006; Ossa, 2015; Imbs and

Mejean, 2015; Imbs and Mejean, 2017) or employed simulated method of moments (Simonovska and

Waugh, 2014). While most of the available estimates rely on a Constant Elasticity of Substitution

(CES) demand framework, some authors explored less restrictive alternatives (Novy, 2013; Chen

and Novy, 2022).

Among these approaches, a widely adopted strategy is to exploit variation in import tari�s

(Romalis, 2007; Caliendo and Parro, 2015; Amiti et al., 2019; Fajgelbaum, Goldberg et al., 2020;

Fontagné et al., 2022). Tari�s represent a variable trade cost that can be measured precisely and

o�er rich variation across countries, products and time. Other authors used variation in import

prices (e.g., Simonovska and Waugh, 2014; Eaton and Kortum, 2002), or in freight costs (Hummels

and Schaur, 2013; Hummels, 1999). In this paper I use import tari�s and de�ne trade elasticity

speci�cally as the elasticity of imports with respect to tari� rates.

Much of the earlier empirical literature relied on cross-sectional variation in tari�s across coun-

tries and products, abstracting from time dynamics. These papers tend to produce large values of

the elasticity in absolute value. In their meta-analysis, Head and Mayer (2014) report a median

trade elasticity of �5, based mostly on static cross-sectional designs.
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More recent studies apply di�erence-in-di�erences techniques exploiting within-country-product

tari� changes over time (Amiti et al., 2019; Fajgelbaum, Goldberg et al., 2020). By controlling

for time-invariant unobservables, these approaches address a key omitted variable concern emphas-

ized by Baier and Bergstrand (2007), and often produce smaller elasticity estimates around -2. A

di�erence-in-di�erences approach can strengthen causal claims about the identi�cation of the trade

elasticity. However, DiD is potentially subject to biases stemming from dynamics and heterogeneous

treatment adoption.

Despite the extensive theoretical research on trade and dynamic adjustments (e.g., Baldwin

and Krugman 1989; Dixit 1989; Alessandria and Choi 2021; Alessandria, Choi and Ruhl 2021;

Ravikumar et al. 2019), the applied literature has largely overlooked dynamics when estimating

trade elasticity. Most trade models based on the gravity equation � the workhorse model for the

applied trade economist � are static in nature, or include at most transition dynamics (e.g., Melitz,

2003). This is, perhaps, why applied researcher often neglected dynamics.

Only a handful of recent papers attempt to estimate dynamic trade elasticities. Boehm et al.

(2023) use local projections (Jordà, 2005) to estimate the elasticity of trade to a Most Favoured

Nation (MFN) tari� changes by comparing MFN to preferential trade (i.e., subject to a Free Trade

Agreement, or FTA), and address the potential endogeneity with an IV design focussed on the

response of small exporters to MFN tari� changes. Their baseline results point to a one-year

horizon elasticity of -0.76 and a long-run elasticity (7-10 years) of -2. Anderson and Yotov (2020)

apply a gravity model including a lagged dependent variable on aggregate bilateral trade data (i.e.,

not by product). Their estimate of the short-run tari� elasticity is -0.54 while the long-run is -

4.94. Anderson and Yotov (2025) estimate a dynamic trade elasticity by using country-pair �xed

e�ects covering di�erent intervals of time and �nd a short-run tari� elasticity of -0.35 and a long-run

elasticity of -4.83. The authors consider the regression with the (standard) country-pair �xed e�ects

covering the entire period as the speci�cation yielding the long-run elasticity. Yet this is exactly the

speci�cation that came under scrutiny in the di�erence-in-di�erences literature (Goodman-Bacon,

2021).2

The emerging consensus is that the trade elasticity varies signi�cantly across products (Fontagné

et al., 2022), over time (Boehm et al., 2023; Anderson and Yotov, 2020), and possibly across countries

(Chen and Novy, 2022). Moreover, the typical dataset used to estimate the trade elasticity is

characterised by staggered adoption.

Hence, when estimating the tari� elasticity, the applied economist is confronted with staggered

2The di�erence-in-di�erences literature focuses on cases where data are indexed by units and time. In the gravity
framework with country-level data, the cross-sectional dimension is identi�ed by the exporter-importer pair.
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adoption, dynamic and most likely heterogeneous treatment e�ects. The combination of these

three features creates a well-known bias in canonical di�erence-in-di�erences �xed-e�ects estimators

(Goodman-Bacon, 2021; De Chaisemartin and d'Haultfoeuille, 2020; Callaway and Sant'Anna, 2021;

Sun and Abraham, 2021). The main problem arises because earlier-treated units may serve as

controls for later-treated ones. If the treatment e�ect takes time to fully manifest � as is likely with

trade shocks � this structure leads to systematic bias.

I address the issue using the local projections di�erence-in-di�erences approach of Dube et al.

(2023). The LP-DID method is quite �exible and can easily be applied to a triple-di�erence setting.

It allows for the estimation of dynamic e�ects with a continuous treatment, as it is the case with

tari� changes, while dealing with staggered adoption. Finally, as with the standard local projections

method, by estimating separate regressions for each post-treatment horizon, the LP-DID is less

computationally expensive than alternative methods dealing with staggered adoption, making it

feasible on large datasets as the one used in this paper.

3 Methodology

This section connects the local projections di�erence-in-di�erences method to the empirical applic-

ation to show how the estimation of the trade elasticity can be a�ected by staggered adoption.

Finally, it introduces the concept of staggered adoption in the estimation of elasticities to repeated

policy interventions, or the cumulative multiplier. I shows how the estimation of cumulative mul-

tipliers with local projections, a common method in macroeconomics, is still a�ected by staggered

adoption. I propose a simple solution based on a sample selection criteria in line with the spirit of

LP-DID.

3.1 Local projections di�erence-in-di�erences

To introduce the concept of staggered adoption and heterogeneous treatment e�ects, I adapt the

notation of Dube et al. (2023) in line with the empirical application. The outcome variable, lnMvit,

is the log of US imports of product v exported by country i at time t. The cross-sectional dimension

is de�ned by a product-country combination vi.

The identifying assumptions are the same for a di�erence-in-di�erences regression: no anticipa-

tion and parallel trends. As we rely on a triple-di�erence estimation, the parallel trends assumption

says that, in the absence of treatment, the di�erence between imports of a�ected and non-a�ected

products would have been the same in a�ected and non-a�ected countries.
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Following the di�erence-in-di�erences literature, assume that the untreated outcome lnMvit(0)

is generated by:

E [lnMvit(0)] = αvi + αvt + αit (1)

where the αvi, αvt and αit are �xed e�ects at the exporter-product, product-time and exporter-time

level.

As is standard in the trade elasticity literature, the continuous treatment variable is measured

as the log of one plus the ad valorem tari�:

ln τvit = ln(1 + tari�vit) (2)

For instance, a tari� of 10% corresponds to ln τ = ln(1.1). I allow the elasticity of trade with respect

to tari�s, εg(h), to vary by treatment cohort g, where a cohort consists of all units treated in the

same period pg. The elasticity can also vary by post-treatment horizon h. Following Dube et al.

(2023), the expected value of the outcome variable at time t+ h can be expressed as:

E[lnMvi,t+h] = αvi + αvt+h + αt+h +
G∑

g=1

[εg(h)∆ ln τvi,t × 1(t = pg)] +

G∑
g=1

∞∑
j=1

[εg(h+ j)×∆ ln τvi,t−j × 1(t = pg + j)] +

G∑
g=1

h∑
j=1

[εg(h− j)×∆ ln τvi,t+j × 1(t = pg − j)] (3)

The �rst line of equation (3) represents newly treated units at time pg = t. The second line represents

the previously treated units, those treated before period t. Finally, the third line represents units

with changes in treatment between period t+ 1 and t+ h.

De�ne the h-horizon change in a variable ∆hxt = xt+h − xt−1. Subtracting E [lnMvi,t−1] from
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(3) we obtain:

E
[
∆h lnMvit

]
= (αvt+h − αvt−1) + (αt+h − αt−1) +

G∑
g=1

[εg(h)∆ ln τvi,t × 1(t = pg)] +

G∑
g=1

∞∑
j=1

[(εg(h+ j)− εg(j − 1))×∆ ln τvi,t−j × 1(t = pg + j)] +

G∑
g=1

h∑
j=1

[εg(h− j)×∆ ln τvi,t+j × 1(t = pg − j)] (4)

with the αvi di�erenced-out. Equation (4) clearly shows the sources of bias arising due to staggered

adoption and heterogeneous treatment e�ects. The standard local projections regression of∆h lnMvit

on ∆ ln τvit and �xed e�ects would only account for the �rst line of equation (4), but we would have

biases arising from lines two and three.

The bias in line two of equation (4) stems from the presence of previously treated units with

∆ ln τvit = 0 but ∆ ln τvit−j ̸= 0 for some j > 0. They become control units for those units with

∆ ln τvit ̸= 0 but might still be subject to delayed treatment e�ects themselves. Second, when

looking at horizon t + h we want to ensure that the control units are not subject to treatment

between period t and t+ h. The LP-DID sample restriction avoids that these kind of comparisons

are made.

To help intuition, consider a unit that received a tari� increase in January 2019. If we are

estimating the elasticity at a 12-month horizon, we must ensure that this unit did not receive

another tari� change between January 2019 and January 2020. Similarly, any control unit must not

have received any tari� change before or during this period. This ensures that we are comparing

newly treated units to untreated ones, avoiding contamination from lagged treatment e�ects.

The LP-DID involves the regression:

∆h lnMvit = βh
τ∆ ln τvit + αh

it + αh
vt + ϵvit (5)

subject to:∆ ln τvi,t−k = 0 for k ≥ −h control

∆ ln τvi,t ̸= 0 and∆ ln τvi,t+k = 0 for k ∈ (1, h)and∆ ln τvi,t−k = 0 for k ≥ 1 treatment
(6)

8



where ∆h lnMvit = lnMvi,t+h − lnMvi,t−1 and lnMvi,t is the log of imports of HS 10-digit product

v from country i at time t. τvit is 1 plus the tari� (e.g., for a 10% tari� τ = 1.1), and αh
it and αh

vt

are �xed e�ects at the country-time and product-time level, respectively, and ϵvit is the error term.

The parameter k determines the stabilization horizon. When we use only not-yet-treated obser-

vations as the control group, we set k = ∞. If we are willing to assume that treatment stabilizes

after k periods, then we can include more observations in the estimation sample by setting k as a

�nite integer.

By applying (6), the estimation sample is restricted to units that did not experience any change

in tari�s up to t + h (�rst line), and units with a change in tari� at time t but no change in tari�

before t or between t+ 1 and t+ h (second line).

The regression model can also be augmented with pre-treatment lags of the outcome variable.

In the main speci�cation, I include lags 1 and 3-24 in intervals of 3 (more on this in Section B).

The set of �xed e�ects means that the estimation strategy is a triple-di�erence regression: we

compare the di�erence of treated vs non-treated products within a treated country against the same

di�erence in a non-treated country. As treatment is continuous, rather than comparing averages we

are comparing slopes.

By contrast, the static triple-di�erence with three-way �xed e�ects is:

lnMvit = bdd ln τvit + αvi + αit + αvt + υvit (7)

By estimating only one coe�cient, the estimation of model (7) rules out dynamic treatment e�ects,

and can be biased by the presence of staggered adoption.

In Appendix A, I show how the estimation strategy outlined in (5) can be linked to a Melitz

(2003)-style model by looking at transition dynamics. In such models, trade responds sluggishly

to tari� changes due to hysteresis in the extensive margin: �rms that entered under old tari�s

may continue exporting even if new conditions would not allow entry. This generates dynamic

adjustment paths which increases in magnitude over time.

De�ning treatment: It is important to clarify how treatment is de�ned in this paper. Broadly

speaking, one might consider any non-zero MFN or preferential tari� as treatment. However, to

leverage arguably exogenous variation in tari�s, this paper de�nes treatment as the 2018 special

tari�s.

In constructing the dataset, I exclude any products a�ected by tari� changes prior to the onset of

the trade war in January 2018, thereby establishing a clean �ve-year pre-treatment window starting
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in 2013. This ensures that any earlier tari� �uctuations had fully stabilized before the treatment

period began, reducing the risk of confounding delayed treatment e�ects. In relation to equation

(1), the pre-trade war baseline tari� rates are absorbed into the exporter-product �xed e�ect αiv.

These base tari�s determine the expected value of the levels of imports, but not their evolution over

time.

3.2 Cumulative multipliers with staggered adoption

As mentioned earlier, the recent paper by Boehm et al. (2023) applies the local projections method

to estimate the dynamics of the trade elasticity. As the authors address dynamics and endogeneity

of tari� changes but not staggered adoption, their estimates o�er a valid benchmark for evaluating

the importance of staggered adoption.

While equation (4) showed that the standard LP estimator su�ers from bias under staggered

adoption, the method used by Boehm et al. (2023) is slightly di�erent as it regresses the cumulative

change in imports on the cumulative changes in tari�s from period t− 1 to t+h rather than on the

initial tari� change ∆ ln τvit. The method is still subject to staggered adoption issues, but requires

a di�erent correction compared to the LP-DID framework.

In many settings � including the 2018 US tari�s � treatment is not a one-o� intervention but

involves a sequence of changes over time (e.g., initial imposition, escalation or rollback). The

sample restriction applied by the LP-DID retains only the �rst observed tari� change for a unit

(unless we assume a stabilization horizon). This approach aligns with the standard di�erence-in-

di�erences framework where treatment is typically absorbing � once a unit is treated, it remains

treated permanently.

By contrast, cumulative treatment frameworks estimate the elasticity of outcomes to the total

change in treatment over a horizon, which is often the relevant concept in macroeconomic applica-

tions (Jordà and Taylor, 2025). We can de�ne the cumulative multiplier m(h) at horizon h of an

outcome variable y in response to a policy intervention s as:

m(h) =
Rc

sy(h)

Rc
ss(h)

(8)

where Rc
sy(h) is the cumulative response of y to a change in the policy s, while Rc

ss(h) is the

cumulative change in s between t−1 and t+h (see Jordà and Taylor, 2025 for more details). Instead

of estimating these two components separately and taking their ratio, m(h) can be calculated in

one step with a local projections instrumental variable (LP-IV) regression. This involves running
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a regression of ∆hy on ∆hs (the change in policy over the same horizon) while instrumenting ∆hs

with ∆s = st − st−1 (Ramey and Zubairy, 2018).

Applied to trade elasticity, the LP-IV regression model is:

∆h lnMvit = βh,cum
τ ∆h ln τvit + αh

it + αh
vt + ηvit (9)

instrumenting ∆h ln τvit = ln τvit+h − ln τvit−1 with ∆ ln τvit = ln τvit − ln τvit−1.

However, in a panel data with staggered adoption, this method is still susceptible to bias because

newly treated units are compared with those already treated. To see this, consider that, at horizon

zero, the change in tari� ∆ ln τvit is instrumented with itself. In this case, LP-IV approach is

identical to the standard LP regression, which retrieves a biased coe�cient.

To link this issue with the one-o� treatment case in the LP-DID framework, we can refer back

to equation (3). In LP-DID, we are concerned with units being treated before t and units treated

between t + 1 and t + h, as these are assigned to the control group despite potential lingering

treatment e�ects. To address this issue, the LP-DID selects only units that are not-yet-treated at

t+ h and units treated at t but neither before nor again between t+ 1 and t+ h.

For the cumulative multiplier, however, we need to retain units for which treatment changes at

t and again between t + 1 and t + h, as they contribute to the cumulative response. The problem

arises with units that are not treated at t but receive treatment between t+ 1 and t+ h. For these

units, ∆h ln τvit ̸= 0 while ∆ ln τvit = 0, meaning the �rst-stage regression of ∆h ln τvit on ∆ ln τvit

predicts ∆h ln τvit = 0, e�ectively assigning them to the control group despite them experiencing

some treatment e�ects.

Intuitively, including units with ∆ ln τvit = 0 and ∆h ln τvit ̸= 0 will bias the �rst-stage regression

of ∆h ln τvit on ∆ ln τvit toward zero. Consider a hypothetical setting in which each unit experiences

only a single tari� change. In the absence of misclassi�cation, this regression would yield a slope

of one and an intercept of zero. However, when the sample includes observations with no tari�

change at time t but non-zero cumulative changes over the horizon, we are mechanically in�ating

the intercept while pulling the slope downward. This distortion can create the false impression

that tari�s are mean-reverting, even when the underlying policy is persistent. In such cases, the

apparent dynamic pattern is not an economic feature of the data but a statistical artefact of improper

treatment classi�cation.

To correct for this issue, we have to apply a sample selection to (9). The `clean' LP-IV regression

to retrieve the cumulative multiplier involves the estimation of (9), instrumenting ∆h ln τvit with
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∆ ln τvit and subject to:∆ ln τvi,t−k = 0 for k ≥ −h control

∆ ln τvi,t ̸= 0 and∆ ln τvi,t−k = 0 for k ≥ 1 treatment
(10)

The control group consists of units not-yet-treated at t + h. The treatment group includes units

treated at t but not before, allowing for treatment to re-occur between t+ 1 and t+ h. Units that

are treated for the �rst time between t+ 1 and t+ h are excluded from the sample.

In Section C of the Appendix I provide Monte Carlo simulations to make the point numerically.

The simulations show that the bias is for the standard LP-IV method can be substantial, while the

clean version can retrieve the true parameter.

4 Policy background

Starting in 2018, the US imposed a series special tari�s on many products and partners. The

tari� increases are related to i) safeguard measures on solar panels and washing machines against

most partners; ii) tari�s on steel and aluminium products on the base of national security, imposed

against many partners; and iii) tari�s on various Chinese products. The special duties varied from

10% to 50%, and were imposed in di�erent waves, with some countries exempted. Least developed

countries were excluded, while other countries negotiated temporary or permanent exemptions.

Apart from the tari�s on solar panels and washing machines, the special tari�s were imposed

shortly after they were announced. For instance, the �rst list of a�ected Chinese products was

announced in April 2018, and tari�s were introduced in July of the same year. Similarly, the second

tranche of Chinese tari�s was announced in July 2018 and imposed in September. This short

time between announcement and implementation minimises the possibility of large anticipatory

behaviours.

The tari�s on metal products added 10% or 25% starting in March 2018 for most countries,

covering about $48 billion of imports.3 Countries negotiated temporary and permanent exemptions

from these tari�s, resulting in groups entering and exiting treatment at di�erent point in times.

The safeguard tari�s on solar panels and washing machines were the result of investigations

started in spring 2017, and they were implemented in February 2018. Di�erently from the metals or

China tari�s, the tari�s on washer and solar were initially foreseen to last for three and four years,

3See the Peterson Institute timeline https://www.piie.com/blogs/trade-and-investment-policy-
watch/2018/trumps-trade-war-timeline-date-guide
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respectively, but they were subsequently extended.

The tari�s on Chinese products were implemented in three main waves, and represent the largest

shock. The �rst wave added 25% on $50 billion worth of Chinese imports, mainly on machineries

and electrical equipment. The second wave targeted $200 billion of imports from China, starting

with a 10% additional duty in September 2018 and raised to 25% in May 2019. The second wave

covered more consumer products than the �rst one. Finally, in September 2019, the US imposed a

15% tari� on another $112 billion, hitting mainly clothing and shoes products. They were reduced

to 7.5% in February 2020 as part of a deal between the US and China. Figure 1 shows the evolution

of the special tari�s over time.

Figure 1: Tari�s waves

(a) China
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(b) Solar panels and washing machines
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(c) Metals

Source: author's elaboration based on USITC data. Panel (a) shows the average tari� on Chinese targeted products, excluding

the products which are subject both China tari�s and solar, washer or metal tari�s. Panel (b) plots the average tari� on

targeted solar panels and washing machines, excluding exempted countries. Panel (c) shows the average tari� on targeted metal

products by country.

Overall, the average tari� applied by the United States increased sharply, passing from 1.77%

prior to 2018 to above 4% by the end of 2022.4

Figure 2 shows the evolution of import values and prices of a�ected vs non-a�ected units (de�ned

as a country-product combination).5 Panel (a) of Figure 2 shows the evolution of the average import

values for a�ected and non-a�ected �ows, setting the average of 2015 to 100. The two series move

closely together until 2018-19, and they start to diverge as tari�s increase. Panel (b) shows the

evolution of import prices (in logs) inclusive of the import duties, setting the average of 2015 to

4This is computed as trade-weighted average with weights given by US imports over 2013-17 by countries and
products.

5For illustrative purposes only here, targeted units are identi�ed as units that are treated at some point in time
during the sample period. This means that the actual timing of tari� changes is not precise in Figure 2, and also
that some of the units treated in 2018 will have seen their tari�s being lifted by the end of the sample period.
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zero. As for import values, the two series move closely together up to 2018. As tari� increased

in 2018, the import price of a�ected products increase sharply. While only indicatively, Figure 2

suggests that the e�ect of tari�s on prices is almost immediate, while it takes more time to fully

materialize on import values, a fact that will be con�rmed by the econometric analysis.

Figure 2: Targeted and non-targeted products

(a) Import values
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(b) Tari�-inclusive import prices
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Panel (a) shows the average import values of targeted and non-targeted units over time, setting the average of 2015=100.

Panel (b) shows the average log import prices (tari�-inclusive) setting the average of 2015 to zero. A unit is de�ned as a

country-product combination, and it is considered a�ected if it faced additional tari�s at some point over the sample period.

5 Data

Imports data at the 10-digit level of the US product classi�cation by country and with monthly fre-

quency over 2013-22 are taken from the US Census. The tari�-inclusive import prices are computed

as the sum of import values and calculated duties over import quantities.

As product classi�cations were updated during the sample period, I concord products over time

using the algorithm developed by Pierce and Schott (2012). I also review the resulting product

classi�cation to ensure that products subject to the tari�s are not merged with non-targeted ones.

The tari� data are taken from the USITC website. I only consider ad valorem tari�s and drop

speci�c tari�s. In the estimation sample, I only consider tari� changes due to the special tari�s on

China, metal products or solar panels and washing machines. This means dropping from the sample

country-product series for which either the MFN or the preferential tari� change over time. There

are 278 products with changes in the MFN tari�s and 347 country-product pairs with changes in

the preferential rates relating to Australia, Japan, and South Korea.

Another issue to take into account is the termination of the Generalised System of Preference

(GSP), a trade program granting duty-free access to certain imports from developing countries. As
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the scheme expired in December 2020, GSP countries saw changes in their market access to the US.

I therefore remove from the sample all GSP countries.6

Finally, I also remove any unit that is subject to anti-dumping (AD) or countervailing (CV)

duties over the sample period. The information on AD and CV duties for the US is taken from

the Temporary Trade Measures database (Signoret et al., 2020). I �nd 9,458 country-product

observations subject to AD or CV duties in the sample period. Removing these observations ensures

that the control units did not experience any tari� change in the sample period.

For MFN countries, the base pre-treatment tari� is the MFN rate over 2013-15. Because I

discard any product subject to changes in the MFN tari�, the 2013-15 rates correspond to the

2013-22 ones. For FTA partners, the base tari� is computed as the log-weighted average of the

MFN and preferential tari�, with weights given by the share of imports by tari� program over

2013-15. That is, for a country exporting under the MFN and a preferential tari�, the applied

tari� is computed as ln τvit = sPRF
vi ln τPRF

vit + (1− sPRF
vi ) ln τMFN

vt where sPRF
vi is the 2013-15 share

of imports coming under the preferential regime, τPRF
vit is one plus the preferential tari� rate and

τMFN
vt is the MFN tari� rate. Such calculation is based on a �rst order approximation of theoretical

model in which �rms from an FTA partner country self-select into the preferential or MFN tari�

regime (see Tamberi, 2023).

The 2018 special tari�s were additional to the base rate. Hence, when a country-product unit

is targeted the extra duty is added on top of the base rate. For an initial rate of 10%, an additional

10% tari� results in a new tari� of 20%. As tari�s were not imposed on the �rst day of the month, I

consider a month treated if the extra tari�s were imposed in the �rst half of the month. Otherwise,

treatment starts the next month.

I follow Fajgelbaum, Goldberg et al. (2020) in not considering special tari�s changes which are

subject to quantity threshold. For washing machines, I only apply the 20% tari� and discard the

50% tari� on over-quota units, as well as discarding the 50% on over-quota washing machine parts.

Table 1 reports the summary statistics of the main variables used in the estimation over the

period 2013-22. The dataset includes 12.2 million observations with non-zero imports at the country-

product level. For tari�s, we do not have missing observations (the full dataset has about 46 million

observations), hence we can compute the change in tari�s even if the log of imports is missing. In

terms of tari� changes, there are almost 20,000 products with changes related to the tari�s on China

and another 19,000 country-product observations seeing changes in terms of metal tari�s. The solar

6I also exclude Turkey and India, which were removed from the GSP scheme before its expiration date in 2019.
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and washer tari�s contribute less, as they a�ect only a few products, giving in total 795 changes.

Table 1: Summary statistics

Variable Count Mean Std Min Median Max

Log imports 12,158,907 10.85 2.45 5.53 10.74 22.69
Log (1+tari�) 12,158,907 0.04 0.06 0.00 0.01 1.56

Changes in log(1+tari�)

China 19,811 0.09 0.07 -0.07 0.12 0.22
Metals 19,395 0.03 0.20 -0.22 0.09 0.22
Solar and washer 795 0.03 0.10 -0.04 -0.02 0.26

The table reports the summary statistics of the two main variables used in the estim-
ation, the log of imports and the log of one plus the applied tari� rate. The summary
statics are computed over the period 2013-15. The second panel of the table reports
the summary statistics of the changes in the tari� rates by type of tari�s.

6 Results

6.1 Main results

Figure 3 plots the estimated trade elasticity across three methods: the static triple-di�erence re-

gression of model (7) (dashed line), a standard local projections estimator without adjustment for

staggered adoption (orange line), and the LP-DID estimator with proper sample restrictions (blue

line). All local projections speci�cations include lagged log imports (lags 1 and 3-24, in 3-month

intervals; see Appendix Section B) and are estimated over horizons from -24 to +48 months relative

to the tari� change.

The LP-DID estimates show an immediate elasticity of -1.43, increasing over time in absolute

value and reaching -3.74 by horizon 48. The elasticity stabilises approximately by month 15. This

quick adjustment time might be a feature of the trade war, a topic discussed further in Section 7.

The comparison with the standard LP estimator (orange line) shows that ignoring staggered

adoption leads to a downward bias of roughly 50% in absolute value at all horizons. The static

triple-di�erence estimate (-1.86) closely matches the long-run estimate of the unadjusted LP model

(-1.97). If this elasticity is interpreted as a long-run value, we have again an underestimation of

about 50%.
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Figure 3: Trade Elasticity: Static, LP, and LP-DID Estimates

The �gure reports the estimated horizon elasticities from the LP and LP-DID estimation together with the 95% con�dence

interval. Each regression controls for lagged values of the log of imports, including lags 1, 3, 6, 9, 12, 15, 18 and 24. Standard

errors are clustered at the country-product level. The dashed horizontal line represents the constant elasticity estimated with

the static triple-di�erence estimator.

These di�erences are economically signi�cant when calibrating quantitative trade models. Con-

sider the Arkolakis et al. (2012) formula for the gains from trade:

Gj = 1− λ
1/ε
jj (11)

where λjj is the share of domestic consumption of country j and ε is the absolute value of the

(long-run) trade elasticity. A larger value of ε implies smaller gains from trade, as product are more

substitutable. As the models considered by ACR are static, the relevant elasticity is the long-run

one.

For the United States, Costinot and Rodríguez-Clare (2014) calculates λjj = 0.913. With the

static estimator (ε = 1.87) we obtain GUS = 4.7%. The long-run elasticity of the LP estimator

(ε = 1.97) would tell us that the gains from trade for the US are 4.5%. If instead we use the LP-DID

value of 3.74, the gains from trade halve at 2.4%.

In short, failing to correct for staggered adoption and dynamics leads to signi�cant overstatement

of the welfare gains from trade. Given how central trade elasticity is to structural and policy models,

this bias has �rst-order implications.
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6.2 Cumulative multipliers

Figure 4 reports results from the LP-IV estimation of cumulative tari� elasticities. Panel (a) shows

the �rst-stage coe�cients (linking the initial tari� change to the cumulative change in tari�s), while

Panel (b) shows the second-stage estimates of the cumulative multiplier � i.e., the elasticity of

imports to the cumulative tari� change. All regressions control for lagged log imports as in the

baseline LP-DID model.

In both panels, I compare two set of estimates. The blue lines represent the `clean' LP-IV,

which applies the sample restriction described in Section 3.2, excluding units treated for the �rst

time between t+1 and t+h. The orange lines use the `uncorrected' LP-IV, which does not exclude

problematic controls.

Two main �ndings emerge. First, the second-stage estimates show a signi�cant downward bias

from failing to account for staggered adoption. At horizon 36, the uncorrected LP-IV multiplier is

26% lower than the clean estimate. This mirrors the bias seen in the one-o� treatment case (Section

6.1), and again results from contaminated comparisons between newly and previously treated units.

Second, we can �nd marked di�erences in the �rst-stage coe�cients. As we know the evolution

of the 2018 US tari�s, we can link the �rst-stage results to the pattern of tari� changes. In the

clean LP-IV speci�cation, the �rst-stage coe�cient equals 1 for horizons 0-4, re�ecting the fact

that no unit received a second tari� change within four months of its �rst. At these horizons,

∆h ln τvit = ∆ ln τvit and the clean LP-IV replicates the LP-DID estimates. At longer horizons, we

observe shifts in the �rst-stage coe�cient that re�ect known features of the 2018-2020 tari� episodes.

The dip at horizons 5-6 is due to the third wave of China tari�s, initially imposed in September

2019 and reduced in February 2020. The increase at horizons 7-10 is explained by the second wave

of China tari�s, which rose from 10% to 25% after seven months. A drop corresponding to the May

2019 lifting of metal tari�s on Canada and Mexico produces a drop at horizon 11.

On average, an initial tari� is followed by a tari� increase of about 5% from horizon 11 onwards.

This result is largely missed using the uncorrected LP-IV method (orange line). Note also that,

given that the �rst-stage coe�cients are close to one, the clean cumulative multiplier is close to

the elasticity obtained with the LP-DID estimator. This does not need to be the case in other

circumstances.

Notably, the estimates from the uncorrected LP-IV estimators for both the �rst- and second-

stage regressions are very close to those obtained by Boehm et al. (2023), who, although using

annual data, �nd a long-run elasticity of -2.12.

Importantly, the pattern observed in the uncorrected �rst-stage regressions � as well as in the
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results of Boehm et al. (2023) � may suggest that tari�s are mean-reverting. In the context of

the 2018 US tari�s, however, we know this is not the case. As explained in Section (3.2), the

apparent mean reversion might not a feature of the data but rather a statistical artefact introduced

by misclassi�cation in the estimation sample. The bias arises mechanically when the �rst-stage

regression attempts to predict cumulative tari� changes ∆h ln τ using only the initial tari� change

∆ ln τ , while including units for which the latter is zero and the former is non-zero. In such cases, the

�rst-stage regression will underestimate the slope and in�ate the intercept. Note that this does not

necessarily imply that the tari�s examined in Boehm et al. (2023) are not genuinely mean-reverting,

but it is possible that mean reversion is a statistical artefact rather than a feature of the data.

Figure 4: Cumulative multiplier

(a) First-stage results (b) Second-stage results

6.3 Validation using external data

To assess the plausibility of the estimated elasticities, I conduct two validation exercises using

external data and di�erent levels of aggregation. The �rst tests whether the LP-DID elasticity

presented in Section (6.1) correctly predicts the observed drop in total US imports from China

during the trade war. The second examines whether EU imports of products subject to retaliatory

tari�s on the US followed dynamics consistent with the estimated elasticity.

A. Total US imports from China: The additional tari�s imposed on China are a shock large

enough to be seen on aggregate US goods imports from China. Hence, in this �rst exercise I compare

two estimates for the change in total US imports from China: (i) a model-based prediction using

the estimated elasticity and observed product-level tari� changes; and (ii) an empirical benchmark
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using a di�erence-in-di�erences regression comparing US imports from China with other countries'

imports from China. While this exercise is not based on truly external data, it provides a sense of

how well the elasticities can predict the aggregate changes in imports.

For the prediction, I construct a product-level panel of US imports from China from February

2018 to December 2022. Let lnM0
v be the pre-treatment average log US imports of product v from

China. I compute the predicted imports h months after the tari� change as:

lnM ′
v,t+h = lnM0

v + β̃h
τ∆ ln τv,t−h (12)

where β̃h
τ is the estimated elasticity at horizon h. For repeated tari� changes, e�ects are added

cumulatively. For h > 48, the elasticity is held constant at its horizon-48 value, the last estimated

horizon.

Predicted imports are obtained M ′
vt = exp(lnM ′

vt), and aggregated across products: M ′
t =∑

v M
′
v,t. The baseline (no-tari�-change) counterfactual is M

0 =
∑

v exp(lnM
0
v ) and the predicted

percentage change is: 100×
(
M ′

t/M
0 − 1

)
.

For the empirical benchmark, I use monthly COMTRADE imports from China by 43 countries

(OECD + BRICS) over the period January 2017 to December 2022.7 I estimate the following DiD

regression using a Poisson Pseudo Maximum Likelihood (PPML) estimator:

Mjt = exp

[
aj,month + at +

Dec2022∑
t=Feb2018

bt (USj × at)

]
+ ηjt (13)

where Mj,t are imports from China of country j at time t, USj indicates whether the importer is

the US. The regression includes importer-by-calendar-month dummies aj,month and time dummies

at. The DiD coe�cient bt are transformed into percentage changes via 100× [exp (bt)− 1].

B. EU retaliatory tari�s on the US: In June 2018, the EU imposed retaliatory tari�s on a set

of US products in response to US metal tari�s. These tari�s � primarily 25% � remained in place

until 2022 and were applied only to US exports. In this exercise I check whether LP-DID elasticities

correctly predict the evolution of EU imports from the US targeted by the retaliatory tari�s.

The data include monthly imports of the targeted products by EU member states from all major

7The countries are: Argentina, Australia, Belgium, Brazil, Bulgaria, Canada, Chile, Croatia, Cyprus, Czechia,
Denmark, Estonia, Finland, France, Germany, Greece, Iceland, India, Ireland, Israel, Italy, Japan, Latvia, Lithuania,
Luxembourg, Mexico, Netherlands, New Zealand, Norway, Poland, Portugal, Rep. of Korea, Romania, Slovakia,
Slovenia, South Africa, Spain, Sweden, Switzerland, Thailand, Turkey, USA and United Kingdom.
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exporters (EU, OECD, and BRICS) from January 2017 to December 2021. The estimation is done

with the following DiD speci�cation:

Mvijt = exp

[
aijv + ajvt +

Dec2021∑
t=Jul2018

bt (USi × at)

]
(14)

where Mvijt are imports of product v imported by the EU member j from exporter i at time t. aijv
is an exporter-importer-product �xed e�ect (the cross-sectional dimension) and ajvt is an importer-

product-time �xed e�ect. USi is a dummy that takes value of one if the exporter is the US, and it is

interacted with time dummies at. I retrieve the coe�cients bt and translate them into percentages

as 100× [exp (bt)− 1].

I compute the predicted trade path in the same way as in part A, using the LP-DID elasticity

and the observed 25% tari� changes. The pre-treatment base value lnM0
v is the average log EU

import from the US of product v over January 2017 to June 2018. Predicted and baseline values

are aggregated as before to compute the percent change in imports.

Figure 5 displays the results for both exercises: aggregate US imports from China (Panel a) and

the EU's retaliatory tari�s on US products (Panel b). In each panel, I plot three series: (i) the

benchmark PPML di�erence-in-di�erences estimates based on external data; (ii) the counterfactual

path predicted using the LP-DID elasticities; and (iii) the predictions based on the biased LP

elasticities that do not correct for staggered adoption.

In Panel (a), the LP-DID-based predictions track the external DiD estimates remarkably closely,

capturing both the timing and magnitude of the import decline following the onset of US tari�s

on China. Toward the end of 2022, the external series becomes slightly more negative. This may

re�ect additional shocks not directly related to tari�s but captured in the empirical series � such as

the introduction of the In�ation Reduction Act in August 2022. In contrast, the predictions based

on uncorrected LP elasticities consistently underestimate the trade response throughout the period.

Panel (b) tells a similar story for the EU retaliatory tari�s. The LP-DID predictions align

closely with the external DiD benchmark across all post-treatment horizons, while the predictions

from biased LP elasticities systematically understate the decline in EU imports from the US.

Together, these exercises show that the trade elasticities estimated using the LP-DID approach

have strong out-of-sample predictive power, both in terms of dynamic adjustment paths and mag-

nitudes. This supports their external validity, a property rarely assessed in the empirical trade

elasticity literature. These results suggest that properly addressing staggered adoption is not only
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important for identi�cation but also crucial for making accurate policy-relevant predictions.

Figure 5: Validation of results with external data

(a) Predicted change in total US goods imports from
China

(b) Predicted change in targeted EU imports from the
US

6.4 Results by product groups

Figure 6 reports LP-DID estimates of the trade elasticity by product group, over a 35-month horizon

following an initial tari� change. Each regression includes lags 1-12 of the log of imports as control

variable.

The adjustment path appears broadly consistent across product categories: in most cases, the

elasticity increases in absolute value during the �rst year and stabilizes around 15 months after

treatment � similar to the aggregate baseline result.

Two groups stand out as somewhat more elastic: Chemicals and plastics and Miscellaneous

manufactured products, both showing long-run elasticities around -4. In contrast, Machineries have

la long-run elasticity closer to -2.5. Metal products are less elastic and exhibit a more volatile

response, possibly due to the more complex timing in the metal tari� regime.

For Agrifood, Primary goods, and Textiles and clothing, identi�cation is limited to the second

wave of China tari�s, which began with a 10% duty in September 2018 and increased to 25% in

May 2019. Since the LP-DID framework focuses on the �rst treatment, only short-run horizons

(0�6 months) are available for these groups.

Overall, while there is some variation in magnitude and volatility, the general shape and timing

of adjustment are consistent across sectors. The average of the group-speci�c elasticities closely

tracks the aggregate LP-DID estimate (see Appendix Figure 9).
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Figure 6: Results by product groups
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6.5 Asymmetric e�ects of tari� increases and decreases

I next study whether the response to the imposition of new tari�s or its lifting have asymmetric
e�ects on imports. Using the LP-DID estimator, I run the following regressions:

∆h lnMvit = βh
τ+∆ ln τvit×1(∆ ln τvit > 0)+βh

τ−∆ ln τvit×1(∆ ln τvit < 0)+

12∑
l=1

blM lnMvit−l+αh
it+αh

vt+evit

(15)

where 1() is and indicator function takes the value of one if its argument is true and zero otherwise.

Since tari� reductions occurs only after a tari� increase in my dataset, I relax the standard LP-

DID sample restriction and assume a stabilization horizon of 10 months. This permits inclusion of

reversal episodes without introducing substantial bias, as the dynamic path stabilizes around that

point.

Figure 7 Panel a shows the estimated responses to tari� increases and reductions separately.

The path following a tari� increase closely matches the baseline LP-DID results, con�rming that

the relaxed restriction does not distort estimation. The response to tari� removals is somewhat

slower in the initial months but converges to the same long-run elasticity, suggesting that the trade

response is broadly symmetric over time. The response to a tari� removal appears to be slower

at the beginning, but converges to the value of the tari� increase in the long run, with a bump at

horizon 23.

Note that the variation for the estimation of the tari� reduction e�ect beyond horizon 12 come

exclusively from the NAFTA exemption from metals tari�s. Other removal events (solar panels,

washers, EU/Japan/UK metals tari�s), contribute only to the estimation of horizons 0-12, either

because they were phased out in 12-month steps or occurred late in the sample.
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Panel (b) shows the hypothetical e�ect of a tari� increase that is removed after 24 months. In

this scenario, we would see trade falling for about 10 months and then stabilising until the additional

tari�s are lifted. Then, imports would increase and return back to the pre-tari� increase values in

about 13-15 months.

Figure 7: Tari� increases and decreases

(a) Tari� increases and decreases (b) Linked tari� increase and removal

6.6 Prices

Beyond import values and quantities, the US import data also report information on the cal-

culated duties paid at the border.8 This allows us to construct a measure of tari� inclusive

import price as the sum of import value and calculated duty divided by the import quantity

pvit = (Mvit + dutyvit) /Qvit.

I estimate the LP-DID model using log import prices as the outcome, without controlling for

pre-treatment trends, since no such dynamics are observed.

Figure 8 show two main results. First, the tari� pass-through to import prices is complete. The

average of the post-treatment coe�cients is 1.04, con�rming the estimates of Amiti et al. (2019) and

Fajgelbaum, Goldberg et al. (2020). Second, there adjustment is immediate. The horizons zero and

one coe�cients are 0.56 and 0.71, respectively, and converge to one by horizon 2. This justi�es the

use of static estimators in price regressions and explains the consistency of my results with earlier

static studies.

Additional results, including a static triple-di�erence speci�cation by product group, are repor-

ted in Appendix Table 2. These show some variation in pass-through across sectors, though the

aggregate pattern remains one of near-complete pass-through.

8Note that while the calculated duties exclude anti-dumping duties, they do include the 2018 special tari�s.
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Figure 8: Tari�-inclusive import prices

6.7 Additional results and robustness tests

I conduct several robustness exercises to assess the sensitivity of the trade elasticity estimates to

sample de�nition and outcome variable choice. Figure 12 illustrates how progressively removing

units a�ected by other trade policy instruments (e.g., anti-dumping duties, MFN changes, or GSP

status) increases the absolute value of the long-run elasticity � from 3.00 using the full sample to

the baseline estimate of 3.74 in the cleanest speci�cation.

To address possible distortions from short-lived treatments, I re-estimate the LP-DID model ex-

cluding product categories for which only short post-treatment periods are observed (e.g., Agrifood,

Primary, and Textiles). I also exclude solar panels and washing machines, whose tari�s may have

been anticipated. In both cases (Figure 11a and 11b ), the results are very close to the baseline.

Finally, I explore the extensive margin response by estimating a linear probability model in

which the dependent variable is an indicator for positive imports. This allows me to capture the

role of tari�s in driving products out of the import basket entirely. The results (Figure 10) show a

dynamic decline in the probability of importing, with a 1% increase in tari�s reducing the probability

of import by 15-20 percentage points over the long run.

7 Discussion

This section discusses the two key empirical results: (i) the short- and long-run trade elasticities,

and (ii) the estimated speed of adjustment to tari� shocks. I contextualize both within the broader

international economics literature.
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Short-run vs long-run elasticity: A long-standing puzzle in international economics is the

`trade elasticity puzzle' � the apparent inconsistency between the trade elasticity values required by

International Real Business Cycle (IRBC) models (typically 1-2) and those needed for quantitative

trade models (typically 4-8). As emphasized by Ruhl (2008), IRBC models often rely on short-

run elasticities, whereas trade models � especially static ones � require long-run values to evaluate

welfare gains or counterfactuals.

My results help reconcile this tension. I estimate a short-run elasticity of -1.4, squarely in the

IRBC-compatible range, and a long-run elasticity of -3.7, consistent with the lower end of the range

used in structural trade models. Although slightly below the Head and Mayer (2014) median of -5,

the estimate is robust and grounded in a method that addresses both dynamic treatment e�ects

and staggered adoption, two sources of bias that have a�ected prior studies.

Moreover, my estimates show that the long-run elasticity is more than twice as large in absolute

value as the short-run one � a dynamic pattern consistent with the time-series analysis of Gallaway

et al. (2003).

Boehm et al. (2023) report short-run elasticities below 1 (in absolute terms), which is di�cult

to reconcile with the assumptions of CES-monopolistic competition models. The authors suggest

that a new theoretical framework reproducing a short-run elasticity below one might be needed. My

estimates, on the other hand, show that a cleaner econometric exercise might be enough to solve

this puzzle.

Adjustment speed: A second key result is that imports respond to new tari�s relatively quickly,

stabilizing within 15 months. This is notably faster than estimates from other settings: Boehm

et al. (2023) �nd a 7-year adjustment horizon for MFN tari�s, and Egger et al. (2022) estimate 5-10

years for trade agreements to fully take e�ect.

The shorter adjustment horizon in my setting may re�ect key di�erences in the nature of the

policy shocks. The 2018 US special tari�s were introduced unilaterally and often under legal mech-

anisms that allowed for exemptions and reversals. This legal and political context may have led

�rms to perceive the measures as temporary, encouraging rapid disinvestment or substitution with

the expectation that tari�s might be lifted � a pattern supported by the symmetric adjustment

results shown in Section 6.5.

Furthermore, the country-speci�c targeting of the trade war, especially against China, likely

facilitated reallocation. Since the tari�s were not global in scope, �rms could more easily switch

to alternative suppliers. This is consistent with evidence from Flaaen et al. (2020), who docu-

ment similar relocation dynamics in the context of U.S. anti-dumping duties. In contrast, MFN
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tari� changes a�ect all trading partners simultaneously, reducing the scope for substitution and

potentially requiring deeper supply chain restructuring � processes that are slower to unfold. Trade

agreements, while typically liberalizing, also di�er substantially: they tend to be phased in gradu-

ally and increase long-run certainty for �rms, which may prompt major reorganization of trade and

production networks that takes longer to implement.

Notably, the shorter adjustment period I document is in line with �ndings from the anti-dumping

literature. Sandkamp (2020), using annual data, shows that import values and prices adjust to anti-

dumping duties within two years � again re�ecting the temporary nature of these policy instruments.

Taken together, these observations suggest that the expected duration and scope of trade policy

changes play a crucial role in determining how quickly trade �ows adjust. Whether this generalizes

across settings remains an open question, but the evidence here points to a potentially systematic

di�erence between temporary and permanent trade interventions in shaping adjustment dynamics.

8 Conclusions

The paper showed how ignoring the dynamics and staggered adoption in the estimation of the tari�

elasticity can lead to severe downward biases up to 50% on the absolute value of the elasticity.

Using a local projections di�erence-in-di�erences estimator that addresses both issues, I �nd that

the short-run tari� elasticity is -1.4 while the long-run is at -3.7.

These estimates are externally validated using aggregate US import data from China and EU

imports of US goods targeted by retaliatory tari�s. In both cases, predictions based on the estimated

elasticities closely match observed trade patterns in terms of both magnitude and timing.

Beyond the trade elasticity estimates, the paper contributes a corrected LP-IV estimator for

cumulative multipliers under staggered adoption, which is a tool that can be applied in a wide

range of empirical settings when policies are implemented gradually. I show that, as with the one-

o� treatment elasticity, failing to account for heterogeneity in treatment timing biases the estimated

multiplier downward.

In terms of the adjustment path of imports to tari�, I �nd that most of the action occurs in the

�rst 15 months following a tari� change. This short adjustment period might be a feature of trade

wars, where tari� changes might be perceived to be temporary. Moreover, as most of the variation

used to identify the elasticity comes from tari�s imposed on China, relocation of production to other

countries might explain the quick adjustment periods.

More broadly, these �ndings suggest that properly accounting for staggered and dynamic treat-

ment e�ects is essential for recovering credible estimates of trade elasticities and for interpreting
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their implications in policy and structural model calibration.
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A Connection to theory

In this section I show how the empirical speci�cation of Section 3.1 can be derived by looking at

the transition dynamics of a theoretical trade model with heterogeneous �rms. In this type of

model, the sluggish adjustment of trade values to a change in the tari� rate is due to the extensive

margin response. Firms incurs in an upfront sunk cost to start exporting and exit only if hit by

an exogenous exit shock. As a consequence, when entry conditions change (e.g., because of a tari�

change) �rms that were already exporting continue to do so, even if they would have not entered

under the new conditions. These legacy �rms create hysteresis in the value of trade, which reaches

the new equilibrium only after the extensive margin fully adjusted.

As the general settings are quite standard to trade models, I will only introduce them brie�y and

focus on the transition dynamics. Consumers in country j have CES preferences over products v

produced in country i. Firms operate in monopolistic competition, are heterogeneous in productivity

φ and produce using only labour. The �rm receives a price pvijt from selling qvijt units, hence we

have revenues:

rvijt(φ) = (pvijt(φ))
1−σ τ−σ

vijtYjtP
σ−1
jt

where the price pvijt(φ) = σ
σ−1

witδvij
φ takes the form of constant markup (denoted by σ

σ−1) over

marginal costs wit and δvij is an iceberg trade cost.9 The tari� τvijt generates a gap between the

price paid by the consumer and the one received by the �rm. To export, a �rm pays an initial sunk

cost fvij , hence only �rms with a productivity above the cut-o� φ∗
vijt start exporting. Setting the

present value of revenues equal to the �xed cost of exporting we can �nd the productivity cut-o�

φ∗
vijt. Integrating �rm sales rvijt(φ) over productivity yields the aggregate imports of product v of

country j exported by i.

For total imports observed at time t, we have to take into account both �rms that entered in

period t facing the current entry cut-o� as well as �rms which entered in t− l with an entry cut-o�

φ∗
vijt−l and survived, discounting them by the survival probability γ. We can express aggregate

9To simplify the derivation, I assumed that variable trade costs δvij are constant over time. For the empirical
application, if variable trade costs are time-varying, identi�cation requires tari�s to be orthogonal to other variable
trade costs.
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imports at time t:

Mvijt = τ−σ
vijtYjtP

σ−1
jt

(
σ

σ − 1
witδvij

)1−σ

︸ ︷︷ ︸
Intensive margin

∞∑
l=0

γlmi,t−l

[∫ ∞

φ∗
vijt−l

φσ−1dG(φ)

]
︸ ︷︷ ︸

Ext. margin active at time t

(16)

The intensive margin is composed by the mass of �rms in the exporting country mi,t−l and the

integral of their productivity, computed for �rms above the exporting cut-o� φ∗
vijt−l. As �rms that

entered before period t can still be active if they entered before t and were not hit by the exogenous

exit shock (1 − γ), the extensive margin active at time t takes into account the discounted lagged

entry.

The exporting productivity cut-o� can be derived by setting expected export revenues equal

to the �xed cost of exporting, and solving for productivity. As a simpli�cation, assume that �rms

expect future values to be the same as current ones. Hence the expected value of exporting is given

by:

Vvijt(φ) =
∑
t

γtrvijt(φ) =
rvijt(φ)

1− γ
(17)

Setting Vvijt(φ) = fvij and solving for productivity yields the exporting cut-o�:

φ∗
vijt =

[
(1− γ) fvij

τ−σ
vijtYjtP

σ−1
jt (witδvij)

1−σ

] 1
σ−1

(18)

Assuming a Pareto distribution for �rm productivity G(φ) = 1−φ−κ as customary in the literature,

and solving the integral in (16) yields the following expression for the value of imports at time t:

Mvijt = τ−σ
vijtYjtP

σ−1
jt

(
σ

σ − 1
witδvij

)1−σ κ

κ− σ + 1

∞∑
l=0

γlmi,t−l

(
φ∗
hijt−l

)−κ+σ−1
(19)

To derive an empirical equation, I plug (18) into (19) and take a �rst-order log-linear approximation
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of all time-varying quantities around a steady state level ss:

lnMvijt|ss = lnMvij,ss+
∞∑
l=0

∂ lnMvijt

∂ lnAjt−l
ln

(
Ajt−l

Aj,ss

)
+

∞∑
l=0

∂ lnMvijt

∂ lnwit−l
ln

(
wit−l

wj,ss

)
+

∞∑
l=0

∂ lnMvijt

∂ lnmi,t−l
ln

(
mi,t−l

mi,ss

)
+ (20)

∞∑
l=0

∂ lnMvijt

∂ ln τvij,t−l
ln

(
τvij,t−l

τvij,ss

)

where Ajt = YjtP
σ−1
jt . Line one of (20) represents the steady state level of log imports, that can be

absorbed by �xed e�ects. Note also that, at any time t, the terms in line two are constant at the

jt and it level hence they can be absorbed by �xed e�ects. Expression (20) can then be written

compactly as:

lnMvijt = αvij + αjt + αit +
∞∑
l=0

βl ln τvijt−l + ϵvijt (21)

where the αs summarise aggregate conditions, βl represent the elasticity of imports to the tari� rate

of t − l periods ago (e�ectively a combination of the structural parameters σ, κ and the discount

factor γ), and ϵvijt is the reminder of the approximation. The short-run elasticity is given by β0

while the long-run elasticity is given by εLR =
∑∞

l=0 βl. In connection to local projections, the

h-horizon elasticity can be computed as εh =
∑h

l=0 βl.

In terms of structural parameters, consider that the partial derivative of the log-imports with

respect to past tari�s is given by:

∂ lnMvijt

∂ ln τvij,t−l
=

γlmi,t−l

(
wσ−1

it−lτ
σ
vijt

Ajt−l

)−κ+σ−1
σ−1

∑∞
l=0 γ

lmi,t−l

(
wσ−1

it−lτ
σ
vijt

Ajt−l

)−κ+σ−1
σ−1

which evaluated at the steady state yields:

∂ lnMvijt|ss

∂ ln τvij,t−l
= −σ

κ− σ + 1

σ − 1
γl (1− γ)

It is easy to show that the long-run elasticity is given by εLR = − σκ
σ−1 , which corresponds to

the elasticity that we would get from a static model. The interpretation of the current tari�

elasticity β0 in equation (21) depends on whether we assume that the extensive margin responds

33



immediately to a change in tari�s or with a one-period lag (as done by Boehm et al., 2023).

In the latter case, the immediate elasticity is simply the intensive margin elasticity and we have

β0 = −σ. If instead we assume that the extensive margin responds immediately to tari�s, we have

β0 = −σ − σ κ−σ+1
σ−1 (1− γ). These considerations do not a�ect the interpretation of the long-run

elasticity.

To connect theory with the local projections estimation, consider a one-o� change in tari�s at

time t, with tari�s being constant at τvij,0 before then. Imports before the tari� change are at their

long-run equilibrium:

lnMvij,t−1 = αvij + αjt−1 + αit−1 + ln τvij,0

∞∑
l=0

βl + ϵvijt−1 (22)

At time t, tari�s move from τvij,0 to τvij,1. Then h periods after the tari� change we have:

lnMvij,t+h = αvij + αjt+h + αit+h + ln τvij,1

h∑
l=0

βl + ln τvij,0

∞∑
l=h+1

βl + ϵvij,t+h (23)

Taking the di�erence between (23) and (22) we obtain:

∆h lnMvijt = αh
jt + αh

it+h + ln τvij,1

h∑
l=0

βl + ln τvij,0

∞∑
l=h+1

βl + ϵhvijt − ln τvij,0

∞∑
l=0

βl

where xht = xt+h − xt−1. We can split the last sum into two parts as can be written as
∑∞

l=0 βl =∑h
l=0 βl +

∑∞
l=h+1 βl. Rearranging, we obtain:

∆h lnMvijt = αh
jt + αh

it+h + (ln τvij,1 − ln τvij,0)
h∑

l=0

βl + ϵhvijt (24)

as ∆ ln τvij,t = ln τvij,1−ln τvij,0, equation (24) shows the connection of the empirical LP-DID regres-

sion model with the transition dynamics predictions of a standard trade model with heterogeneous

�rms.
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B Additional results

Figure 9: Baseline results and average of product groups elasticities

� � �� �� �� �� �� ��
��������������
�������
���

����

����

����

����

����

����

����

��

�

���
���



������
	���
��������������������

The �gure shows the baseline elasticity against the average of the product groups elasticities.

Figure 10: Probability of importing

The �gure shows the LP-DID estimation of the linear probability model for the probability of importing. The dependent

variable is an indicator that equal one if imports are positive and zero otherwise.
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Figure 11: Robustness tests

(a) Excluding Agrifood, Primary and Textile and
Clothing

(b) Excluding solar panels and washing machines

Sub-�gure 11a shows the elasticity estimated excluding Agrifood, Primary and Textile and Clothing products together with

the baseline results. For those three product groups, we could estimate the elasticity only up to horizon 6 as they then saw

subsequent changes in the tari� rates. Sub-�gure 11b shows the elasticity estimated excluding solar panel and washing machines

together with the baseline results.

Figure 12: Cleaning the sample from other tari� changes
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The �gure shows the results for the tari� elasticity estimated with the LP-DID on di�erent samples. The line dotted line with

squares as markers uses all data. The dashed lines with x as markers removes country-product units subject to AD or CV

duties. The solid line with circles as markers is the baseline, and removes also units with changes in the MFN or preferential

tari�, as well as GSP countries.
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Pre-trends The baseline speci�cation controls pre-treatment values of the outcome variable. The

choice is based on an empirical investigation of pre-trends. To check for the existence of pre-trends, I

estimate the LP-DID regression from horizon -24 to horizon -2 without controlling for pre-treatment

values of imports. The regression for the pre-treatment horizon is:

lnMvit+h − lnMvit−1 = bhτ∆ ln τvit + ait + avt + evit

for h = −24, ...,−2. Hence the dependent variable for horizon -24 is the change lnMvit−24 −
lnMvit−1. As growth rates are easier to interpret if they follow the natural order of time, I report

the negative of the estimated coe�cient corresponding to lnMvit−1 − lnMvit−24, the change from

t− 24 to t− 1.

I then add as control variables the lags 1-12 of the log of imports, as well as the lags 1, 3, 6, 9,

12, 15, 18 and 24, which are those used for the baseline result. These lagged outcome variables are

measured before treatment. More importantly, in the LP regression pre-treatment outcome values

are pre-determined, hence the standard issues of lagged dependent variable in panel data do not

apply.

Results are plotted in Figure 13. Without controlling for lagged imports, I �nd some evidence

of pre-trends. The horizons -24 to -6 are generally positive and signi�cant. Controlling for the lags

1-12 removes the trend over horizons -12 to -2 mechanically, but we still see some pre-treatment

trends from horizons -24 to -13. On the other hand, controlling for lags 1 and 3-24 in intervals of

3 essentially removes all signs of pre-trends. Controlling for lagged values of imports increases the

absolute value of the elasticity, in particular from horizon 22 onwards.
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Figure 13: Controlling for lagged imports

The �gure reports the comparison of the elasticity from using the LP-DID estimator with and without the controlling for lagged

imports. The LP-DID pre (a) includes lags 1-12 of the log of imports. The LP-DID pre (b) includes lags 1 and 3-24 in intervals

of 3 of the log of imports. The 95% con�dence intervals are based on standard errors clustered at the exporter-product level.

Price regressions by product: I estimate a static triple-di�erence regression with exporter-

product, exporter-time and importer-time �xed e�ects. I then interact the log of one plus the tari�

with dummies for each product groups. Compared to the LP-DID, the static regression gains in

e�ciency.

The results are reported in Table 2. On aggregate, the tari� coe�cient is 1.014 (0.048), indicating

full pass-through (see column 1). There is however some heterogeneity across product groups. First,

we note that the average of the product-speci�c coe�cients weighted by the number of observations

in each product group yields 1.047. For individual product groups, we cannot reject the hypothesis

of full pass-through for Machineries, Miscellaneous manufacturing products, Textile and clothing as

well as the residual category. On the other hand, Agrifood, Metals and Primary products exhibit

incomplete pass-through. Chemicals and plastics is the only product group for which we cannot

reject the null hypothesis of a more than full pass-through.
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Table 2: Import price regressions

(1) (2)

Aggregate 1.014***
(0.048)

Agrifood 0.680***
(0.092)

Chemicals and plastics 1.571***
(0.090)

Machineries 1.154***
(0.090)

Metals 0.766***
(0.060)

Miscellaneous 1.084***
(0.217)

Primary 0.555***
(0.109)

Textile and clothing 1.015***
(0.077)

Residual category 2.236*
(1.339)

Product-time x x
Country-time x x
Country-product x x

Observations 8,661,772 8,661,772
R2 0.869 0.869

Standard errors clustered at the country-
product level in parenthesis. * p<0.1, **
p<0.05, *** p<0.01. The table reports the
results from the triple-di�erence regressions for
import prices. The dependent variable is the log
of the tari�-inclusive import price. In column 1,
the independent variable is the log of one plus
the tari�. In column two, the log of one plus
the tari� is interacted with dummies for each
product group.

C Monte Carlo simulations for clean multipliers

This section presents the Monte Carlo simulations for the estimation of multipliers using a clean

control group. The control group consists of units not yet treated at time t + h. The treatment

groups is composed by units treated at t and possibly re-treated between t + 1 and t + h. Units

treated between t+ 1 and t+ h but not at t are excluded from the sample.

The data generating process is the following. The panel dataset is composed N = 100 units and

T = 25 periods. The �rst ten units are never treated while the last ten are subject to one treatment
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only. Other units can be treated once or twice.

The �rst treatment period is randomly drawn from a discrete uniform distribution with minimum

5 and maximum of 25 � meaning that no unit is treated in the �rst �ve periods � and it vary across

units. The second treatment period, also randomly drawn from a uniform distribution, can be from

one up to ten periods ahead of the �rst treatment. If, for a given unit, the second treatment occurs

after the last sample period, the unit is treated only once.

Let xit be the continuous treatment variable. For the �rst treatment, xit is drawn from a

uniform distribution ranging between 0.5 and 1. For the second treatment, xit is drawn from a

uniform distribution with minimum 0.3 and maximum 0.8.

The treatment e�ect is homogeneous across units, but heterogeneous over time. Given a change

in x at time t, for a one unit increase in x the outcome variable increases by one at each horizon up

to t+ 5, when the treatment e�ect stabilizes (i.e., the treatment e�ect from horizon 0 to 5 is 1, 2,

3, 4, and 5). The second treatment has the same dynamic e�ect. Note however that, if the second

treatment occurs before the �rst one stabilized (= before horizon 5), the second treatment e�ect is

added on top of the still ongoing �rst treatment e�ect.

The outcome variable is therefore:

yit = αi + αt +
∑
l=0

βl∆xit−l + eit

where αi and αt are unit and time e�ects, eit ∼ N(0, 0.1) and βl = [1, 2, 3, 4, 5, ..., 5].

The results from 50 simulations are reported in Figure 14. Panel 14a plots the true average

treatment e�ect together with the full range of treatment e�ects, together with the estimates of the

clean LP-IV estimator, and its 95% multiplier. Panel 14b does the same but for the standard LP-IV

estimator. We can see that the clean LP-IV tracks well the true average treatment e�ects at all

horizons, and it is always within the full range of treatment e�ects. Di�erently, the standard LP-IV

estimator underestimates the treatment e�ects at every horizon, and it is almost always outside the

full range of results. This is con�rmed by the Root Mean Square Error reported in panel 14c.
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Figure 14: Monte Carlo Simulation Results

(a) Clean LP-IV Estimator (b) Standard LP-IV Estimator (c) Root Mean Square Error
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Results from the Monte Carlo simulations. Panel 14a plots the average true treatment e�ect (solid line) and the full

range of results (shaded grey area), together with the treatment e�ects estimated with the clean LP-IV estimator

and its 95% con�dence interval. Panel 14b does the same but for the standard LP-IV estimator. Panel 14c reports

the Root Mean Square Error.
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